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Abstract 

The musculoskeletal system of the human is a complex system that still has a lot of unsolved 
mysteries. There is plenty of research being performed right at this moment which is trying to better 
understand the movement apparatus of the human. In spite of all research being conducted, there are 
no clear description of the important issues of which facts determine how much and which muscle 
activates in different movements. This also raises the question of the amount of force each muscle 
contributes with over the different joints for different movements. 

The aim of the thesis was to develop a musculotendon unit model for use in optimal control 
simulations. The model was targeting to be specialized to handle optimization problems in stretch-
shortening sport movements. 

The work was concentred on the development of a musculotendon (MT) -unit model, consisting of 
the muscle and its belonging tendon structure. The model included features for force-velocity and 
force-length relationship, elasticity of cross-bridges and the passive structures in muscles. The model 
was made dimensionless which opened the possibility to use it for all skeletal muscles in the body 
together with the muscle specific parameters. Excluded in the model was the possibility of variable 
muscle activity and pennation angle. 

The purpose of the MT-unit model was to incorporate it into a musculoskeletal (MS) model. The MS 
model developed and used consisted of one degree of freedom, two segments and one muscle. This 
model was then used in a drop jump simulation where the ground contact phase was evaluated. The 
muscle was assumed to be fully activated during the whole ground contact. This simulation generated 
realistic results. 
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1 Introduction 

The musculoskeletal system of the human is a complex system that still has a lot of unsolved 
mysteries. There is plenty of research being performed right at this moment which is trying to better 
understand the movement apparatus of the human. In spite of all research being conducted, there are 
no clear description of the important issues of which facts determine how much and which muscle 
activates in different movements. This also raises the question of the amount of force each muscle 
contributes over the different joints for different movements. The answers to these questions would 
be of great interest for a lot of professions and peoples. Professions that would be interested of this 
knowledge are personal trainers, gym instructors, conditioning trainers, elite actives, surgeons, 
physiotherapists, sport biomechanists and coaches. 

Even though the picture of how muscles activate and which forces are produced is not totally clear 
the research has discovered many important findings. These findings, and methods of how to 
investigate these questions, are presented in chapter 3. 

At the start of this thesis the knowledge of the field were insufficient and a large amount of energy 
had to be put into understanding what has been done and what is the most important questions in 
the field. An aim with research is to generate new findings but that require a great knowledge of 
previous and present work. 

The author has a great interest in sports and the human movement pattern. Due to these interests 
many questions were posed before the thesis. Is it possible to mathematically simulate an injury and 
investigate the consequences on the movement pattern? If it is possible, then it could be of great 
value for deciding when an athlete is recovered from an injury. What kind of running technique is the 
most economic and which one is the best for sprinting? Is it possible to answer these questions by 
doing computational simulations, and in that case; which one? 

 

Enjoy reading! 
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1.1 Biomechanics 
The domain of interest of biomechanics is huge: it ranges across physiology (with a special focus on 
the musculoskeletal, cardiovascular, respiratory, and digestive apparatuses), pathology (orthopaedics 
and traumatology, maxillofacial surgery, dentistry and orthodontistry, cardiovascular and respiratory 
surgery), forensics (accident reconstructions, crime scene investigation), vehicle safety (car safety, 
helmets), ergonomics and workplace safety, defence and social security (combat and law 
enforcement protection, effectiveness of projectile weapons), and sport (performance optimization, 
protection devices). (Viceconti, Testi et al. 2006) 

Its main scientific journal, the Journal of Biomechanics, was founded only in 1968; even later, the 
International Society of Biomechanics was founded in 1973, the European Society of Biomechanics in 
1976, and the American Society of Biomechanics in 1977. While the research activity over these 30 
years has been intense, the impact of biomechanics today is not yet as great as one may have 
expected. One of the main factors limiting the application of biomechanics results is that, to answer 
most practical questions, a global model is required (Viceconti, Testi et al. 2006). 

 

1.2 Aim 
The aim of the thesis was to develop a musculotendon unit model for use in optimal control 
simulations. The model was targeting to be specialized to handle optimization problems in stretch-
shortening sport movements. 

 

1.3 Objectives 
• Develop a two-dimensional musculoskeletal model 
• Improve the developed model according to the latest research on SSC 
• Validate the model 
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2 Biomechanics of the human 

The knowledge of the human physiology and especially the human biomechanics is of great 
importance when trying to model the human musculoskeletal system. The general descriptions in this 
chapter are relatively sparse and more focus has been placed on specific properties important for 
this thesis. This chapter is divided into three parts; bone and joints, skeletal musculotendon units, and 
stretch-shortening cycle.  

2.1 Bones and joints 
The skeleton in the body consists of bone connected with joints for ability to move. Bone is a hard 
material which gives the skeleton very good mechanical properties (Marieb 2004). 

The anatomical structure of a given joint, as well as the direction of which the attached body 
segments are permitted to move at the joint, have very small variations from person to person. 
However, differences in relative tightness or laxity of the surrounding soft tissues result in different 
range of movement (ROM). (Hall 2003)  

2.2 Skeletal musculotendon units 
The structure of the human skeletal musculotendon unit is well examined and consists of the muscle 
and tendon. The tendons consist of collagen and elastin and connect the muscle with the bone. The 
muscle is divided into smaller and smaller portions starting with the whole muscle, fascicles, fibres 
and finally fibrils. The fibrils are built up by sarcomeres, shown in Figure 1, which consists of actin, 
myosin and elastic filaments. The movement of the muscle is due to the active movement between 
actin and myosin filaments and the elastic filament contributes to the elasticity of the muscle. (Marieb 
2004). 

 

Figure 1: The myofibril (upper) and a sarcomere (lower) of a skeletal muscle. Reproduced from Marieb 
(2004) 

 



 2.  BIOMECHANICS OF THE HUMAN 

Page 4 
 

2.3 Stretch-shortening cycle 
An eccentric muscle action is defined as a muscle action performed during lengthening (or stretching) 
of the muscle and a concentric muscle action is defined as a muscle action during its shortening. The 
combination of an eccentric directly followed by a concentric action forms a natural type of muscle 
function called stretch-shortening cycle (Komi 2000). This function, or phenomenon, is present in 
daily life activities as walking, running and jumping. Many studies have proved that the enhancement 
gained from SSC mainly is due to stored elastic energy (Komi 2000). 

The literature has described many factors that influence SSC in different ways. The amount of 
activation of the muscle before impact, called pre-activation, has been stated to be important (Komi 
2000). Further, the change of length of the muscle fascicle compared to the tendon structure during 
the functional phase and the stretch reflex affects stretch-shortening cycle (Komi 2000). In vivo 
experiments on cats reviled that the force increase with higher speeds (Gregor, Roy et al. 1988). 
Even though this has been known for a long time the ability to directly apply that on the natural 
movement including SSC is not straightforward.  

In a specific study it has been shown that up to a speed of 14·km/h the positive external work 
duration is greater than the negative external work duration, suggesting a contribution of muscle 
fibres to the length change of the muscle–tendon units. Above this speed, the two durations (<0.1·s) 
are similar, suggesting that the length change is almost totally due to stretch–recoil of the tendons 
with nearly isometrically contracting fibres (Cavagna 2006). 

Triceps surae 
In human triceps surae, a muscle with short fibres and a long tendon, the time courses of the total 
(muscle and tendon) length and of the length of the contractile component (CC) alone in running are 
completely different. The muscle tendon complex shows first an eccentric phase with negative work, 
followed by a concentric phase. The CC, on the other hand, is concentric all the time. Moreover, the 
work that is performed is done at a speed that guarantees a high energetic efficiency. It is argued that 
this high efficiency is an in-built property of the muscle mechanics for muscles with a compliant 
tendon and a low maximal velocity (Hof 2003). 
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3 Review: Modelling of the musculoskeletal system 

It seems as it is an exponential increase in research performed in the area of modelling the 
musculoskeletal system and there are also good and recent review articles in the field (Pandy 2001; 
Fernandez and Pandy 2006; Viceconti, Testi et al. 2006; Erdemir, McLean et al. 2007). One of the 
largest areas of human movement is the human gait and also in this area a few recent review articles 
have been published (Zajac, Neptune et al. 2002; 2003). Because of this already good mapping of the 
research in modelling the musculoskeletal system the gain of knowledge has been great. A special 
interest has been put on the ability to better simulate movements involving high speed and large 
forces such as high jump, sprint running and many other sport activities. A property that increases in 
importance when the movement involves high speed is the stretch-shortening cycle phenomenon 
(Komi 2000), see 2.3 for more details.  

The first valid question to ask is why there is a need of developing models of the musculoskeletal 
system. The alternative is to directly or in laboratory environments carry out measurements on the 
human body. Both these methods are needed because direct measurements are in many cases the 
only possible method to use but direct measurement of for example muscle forces is generally not 
feasible in a clinical setting, and non-invasive methods based on musculoskeletal modelling are 
therefore mostly considered (Erdemir, McLean et al. 2007). Dynamic simulations of movement, using 
a musculoskeletal model, allow one to study neuromuscular coordination, analyse athletic 
performance, and estimate internal loading of the musculoskeletal system. Simulations can also be 
used to identify the sources of pathological movement and establish a scientific basis for treatment 
planning (Delp, Anderson et al. 2007). 
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3.1 Musculoskeletal system 
Phenomenological and numerical models of the musculoskeletal system are built up in many different 
ways depending on how the models are supposed to be used. The most accurate and sophisticated 
muscle models described in the literature yield infeasible computation times, even on modern 
supercomputers, if they are combined with optimal control techniques (Eberhard, Spägele et al. 
1999). Therefore, plenty of different models are developed and a difficult part is to evaluate which 
model and method is best and in which cases. When using an inverse dynamic solution with static 
optimization a much more advanced model can be used compared to an optimal control solution but 
instead this optimization is only considering static conditions. A number of anatomical measurements, 
extremely important for biomechanical modelling, such as muscle-fibre length, tendon rest length and 
muscle-fibre pennation angles, can currently be obtained only via dissection (Viceconti, Testi et al. 
2006). Because of this, advanced scaling tools have to be used to get the right dimensions. 

There are plenty of models presented in the literature but the ability to replicate them is more or 
less impossible if the author of the model is not willing to supervise. As a part of the review one 
article was chosen to make a more thorough analysis. It turned out that 26 reference articles were 
needed to be able to reconstruct the model. Of these 26 references around half of them were easy 
to find but a few articles were considered impossible to find by the author. One of the articles was 
referring to unpublished material that would be sent by request which is getting quite difficult when 
the article is almost three decades old.  

3.1.1 Complicated compared to simple model 
A query that could be of great interest for a researcher is the knowledge of how complicated model 
that has to be used. Depending on the research question to answer different levels of complexity has 
to be put into the model. While simple models can be helpful in identifying basic features of muscle 
function, more complex models are needed to discern the functional roles of specific muscles in 
movement (Pandy 2003). The one of the most simple models to use is a spring-mass model which 
were used by Bullimore & Burn (2007) to analyse running (3-5 m/s). It showed good predictions of 
stance time, vertical impulse, contact length, relative stride length and relative peak force but 
systematically overestimated horizontal impulse, change in mechanical energy, aerial time and peak 
vertical displacement (Bullimore and Burn 2007). The spring-mass model is usually used to predict 
the external kinetic and kinematic variables of interest (Cheng and Hubbard 2004; Robilliard and 
Wilson 2005),  or the joint torque (Cheng and Hubbard 2005).  

In the study by Pandy (2003) a comparison were made between one simple and one complex model 
in walking. The variables of interest were how muscle forces, gravitational forces and centrifugal 
forces (i.e. forces arising from motion of the joints) combine to produce the pattern of force exerted 
on the ground. It showed that the simple model gave reasonable results for the larger questions of 
understanding but the far more complex model (3D) gave plenty of important detailed information 
(Pandy 2003). 

The interest of what is going on inside the body drives the development of more complex models 
which includes muscles. Many models are built in two dimensions (see Table 1) making the model 
less complex. This introduces difficulties since the human body musculature has three-dimensional 
characteristics that are hard to be reduced into two dimensions. Especially, when looking at the 
location of the origin, insertion and via-points of most muscles, it is observed that three-dimensional 
vectors instead of two-dimensional vectors better represent the line of action of many muscles 
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(Nagano, Umberger et al. 2005). Due to that reason and the improving computer capacity many of 
the newer models are developed in three dimensions. 

The latest in model development is to create three-dimensional (3D) finite-element models that are 
able to represent complex muscle geometry and the variation in moment arms across fibres within a 
muscle. This new framework for representing muscle will enhance the accuracy of computer models 
of the musculoskeletal system (Blemker and Delp 2005). 

3.1.2 Bones and joints 
The modelling of the bones and joints is of course dependent on the complexity of the model, but it 
is usually assumed that the bones are infinitely rigid and the body articulations are ideal joints 
(Viceconti, Testi et al. 2006). The degree of freedom in a joint is also a very important issue because 
the results can differ a lot. It has been shown for example that pure hinge joints are inappropriate for 
modelling the dynamical joint function of the knee and ankle joints. A more flexible joint 
representation predicted a lot of synergistic as well as antagonistic muscle activation which was also 
found in the EMG patterns (Glitsch and Baumann 1997). 

When the physiological joint constraints are not imposed, e.g. modelling the ankle joint as a spherical 
joint, muscle forces can instead be overestimated. Related to kinematics, a two-dimensional 
musculoskeletal model will give different results than a three-dimensional model as a result of 
enforcing joint movements, which are naturally three-dimensional, to be in a plane (Erdemir, McLean 
et al. 2007). It is therefore important to use a model with the appropriate number of degrees of 
freedom in order to avoid overestimation of muscle forces. This means that the standard 3Djoint 
torques’s are not necessarily a good starting point. 

3.1.3 Skeletal muscles 
Within the context of modelling skeletal muscles at least two types of muscle models may be 
important. The first is a molecular type, e.g., the sliding filament models by Huxley(1974) where the 
muscle actions are described at the sarcomere level by using insight into the biophysical processes. 
The second are phenomenological or macroscopic models, e.g. the Hill type (Winters and Woo 
1990), where mathematical models and their respective parameters are derived from transfer 
functions between input/output data without analysis of the microscopic biomechanical/biochemical 
processes. Both approaches have their strengths and weaknesses. For the first approach, the correct 
abstraction and modelling of complex biological structures as well as the determination of model 
parameters seems to be difficult. The second approach often suffers from a lack of accuracy in 
specific situations (Eberhard, Spägele et al. 1999). The complexity of the molecular type would be far 
beyond what is reasonable. Therefore, some kind of phenomenological model is used in all cases of 
musculoskeletal modelling known by the author and usually a Hill type model (Pandy 2001). 

The muscles are the only active elements which can apply forces to the skeleton. They are 
controllable by the central nervous system. Therefore, their accurate mathematical description is 
even more important than very detailed approaches for the skeleton (Eberhard, Spägele et al. 1999). 
Muscle’s peak isometric force is usually obtained by multiplying muscle’s physiological cross-sectional 
area (PCSA) by a generic value of specific tension (Pandy 2001). The corresponding fibre length for 
the maximum force and pennation angle are almost always based on data obtained from cadaver 
dissections (Pandy 2001). 

A study performed muscle force estimates for walking and showed that the property most sensitive 
to changes where tendon rest length and least sensitive were muscle PCSA. These results emphasize 
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the importance of obtaining accurate estimates of tendon rest length and muscle-fibre length, 
particularly for those actuators that function as prime movers during locomotion (Redl, Gfoehler et 
al. 2007). 

 
Figure 2: Force-velocity relationship  (Huxley 1974) 

As been stated before the Hill model is a phenomenological model. The model was first seen in 
literature 1939. Using the Hill model, it is possible to describe qualitatively the force-time response 
of the muscle (Cole, van den Bogert et al. 1996). 
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3.2 Algorithms for estimation of muscle forces 
Model-based estimation of muscle forces usually requires optimization regardless of the strategy 
(inverse or forward dynamics) selected to solve for the equations describing the musculoskeletal 
system. The adoption of either an inverse or forward dynamics approach is typically dependent on 
the availability of the experimental data or the clinical/research question to be answered. (Erdemir, 
McLean et al. 2007) 

In the literature three different methods are frequently present and these three are also described 
here. One of them are using inverse dynamics with static optimization, the other two are using 
forward dynamics one combined with assisted tracking of data and the other with optimal control 
formulation. 

3.2.1 Inverse dynamics-based static optimizations 
Muscle force estimation using gait data combined with inverse dynamics and static optimization has 
been practiced for almost three decades and has become a routine tool in clinical gait analysis 
(Erdemir, McLean et al. 2007). The muscular load sharing problem is solved for each instant in time, 
by minimizing an objective function (e.g. total muscle force) subject to constraints representing the 
equality of the sum of individual muscular moments to the joint torques calculated from the inverse 
dynamics analysis (Erdemir, McLean et al. 2007). Inadequate kinematic models to represent the 
motion of interest and inaccuracies of experimental data have been identified as weaknesses of the 
methodology (Erdemir, McLean et al. 2007). 

3.2.2 Forward dynamics assisted tracking 
Forward dynamic optimization can be performed such that solutions are less dependent on measured 
kinematics and ground reaction forces, and are consistent with additional knowledge, such as the 
force–length–velocity–activation relationships of the muscles, and with observed electromyography 
(EMG) signals during movement (Erdemir, McLean et al. 2007). 

When muscle excitations or joint torques are available or assumed, a forward dynamics approach 
can be utilized that integrates the system equations to calculate the movement patterns. An initial set 
of muscle activations are fed into a forward dynamics model of the musculoskeletal system. The 
solution is compared against experimental data and the process is iterated by updating the muscle 
activations that best reproduce the experimental kinematics and in some cases kinetics (Erdemir, 
McLean et al. 2007). 

The technique has been used in a variety of activities and particularly found its applications for high 
pace movements of sports biomechanics. A common use has been to find a set of muscle activations 
that can reliably reproduce the movement pattern, and subsequently perturb parameters of the 
optimal solution to explore injury mechanisms. This strategy is advantageous due to the more 
straightforward inclusion of muscle dynamics within the solution when compared to inverse 
dynamics-based static optimization (Erdemir, McLean et al. 2007). Although the dynamics of the 
muscle (activation and force generation properties) might not be influential for low pace movements, 
muscle force estimation for activities of high performance might benefit from this property of 
forward dynamics assisted data tracking (Erdemir, McLean et al. 2007). 

It is possible that multiple solutions exist to track the same experimental data. Multi-objective 
criterion probably increased the tracking errors in favour of estimating muscular forces based on task 
objectives (Erdemir, McLean et al. 2007). 
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The approach is advantageous in that the movement is predicted. Yet, accurate knowledge of muscle 
excitations (forces) or joint torques is rare, eliminating the stand-alone application of this technique 
(Erdemir, McLean et al. 2007). 

3.2.3 Optimal control strategies 
Occasionally the experimental data might be incomplete or the movement related investigations 
require predictive simulations of the musculoskeletal system in novel situations for which no 
movement data are available. Under these circumstances, optimal control strategies that use forward 
dynamics are alternatives to solve for muscle excitations and forces during movements. Given an 
initial set of muscle excitations, system equations are first solved in a forward dynamics fashion. 
Then, the objective of the movement and task related constraints, e.g. static equilibrium at final time, 
are calculated. The objective can be a function of muscle force and kinematics. It can be related to 
task performance, e.g. maximum height jumping, and is usually represented in an integral form to 
introduce dependence on time history (Erdemir, McLean et al. 2007). The process is iterated until an 
optimal set of muscle excitation patterns is found that minimizes the objective and satisfies the 
constraints (Erdemir, McLean et al. 2007). 

The technique allows for changes in motion and adaptations at the muscular control level following 
alterations in the system. This major advantage can lead to predictive simulations to assess changes in 
control of muscles and muscle forces as a result of therapeutic interventions, surgery and 
rehabilitation (Erdemir, McLean et al. 2007). However, the selection of an objective function can still 
be controversial; the criterion is clear for movements that aim for optimal performance (e.g. maximal 
height jumping) but for other activities (that rely on physiological function) such as walking at 
different speeds and non-ballistic movements, this selection relies on the investigators’ preference 
(Erdemir, McLean et al. 2007). Computational complexity and implementation difficulties also 
prohibit the routine use of this technique in clinical settings and limit its use to research 
environments (Erdemir, McLean et al. 2007). Similar movement patterns can be obtained using 
optimal control simulations with different objective functions while investigating non-ballistic 
activities, but the muscle activation patterns might be different (Erdemir, McLean et al. 2007). 

When using optimization techniques to predict muscle forces, it must be recognized that the solution 
is sensitive to many assumptions and variables such as PCSA. On the other hand, the joint force 
solutions are less sensitive to such variations, and the absolute values are more reliable (Brand, 
Pedersen et al. 1986). 
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3.3 Validation 
All results generated from a computer model have to be validated to show that they gave reasonable 
results. Due to many reasons there are difficult to successfully validate the musculoskeletal 
computations of the muscle force estimates (Erdemir, McLean et al. 2007). 

Studies of muscle force predictions usually compare muscle loading or activation patterns against 
EMG data as an estimate of validity. Although evaluating the temporal characteristics and intensity of 
muscle firing during a movement is useful, such comparisons cannot verify the magnitude of the 
calculated muscle force. Fortunately, alternative and more advanced analyses exist, which incorporate 
the quantification of muscle force sensitivity on modelling parameters and comparisons of muscle 
forces against direct measurements of tendon loading (Erdemir, McLean et al. 2007). 

Direct validations are limited to simple musculoskeletal models, e.g. with one or two degrees of 
freedom, and tendon force measurements are performed on animals by surgical implantation of 
tendon force measurement devices. Nonetheless, the results of these studies can be used to assess 
the validity of objective functions used in inverse dynamics-based static optimization and the load 
sharing between synergistic muscles (Erdemir, McLean et al. 2007). 

It is possible to predict similar muscle forces and joint reaction forces for walking using the inverse 
dynamics-based static optimization approach and the optimal control simulation approach. The 
consistency observed in these muscle force predictions suggests that if experimental accuracy can be 
improved, then resultant muscle forces might not depend on the simulation characteristics (Erdemir, 
McLean et al. 2007). 

Induced acceleration analysis (IAA) provides a platform to establish the link between an isolated 
change in a muscle force and the corresponding changes in the movement. This ‘‘coupled dynamics’’ 
representation can explain some of the counterintuitive functions of biarticular muscles, such as the 
gastrocnemius functioning as knee extensor for specific conditions (Erdemir, McLean et al. 2007). 
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3.4 Musculoskeletal models in literature 
The number of musculoskeletal models in literature is very large due to the large amount of different 
implementations. First of all there are a very simple models only using simple spring-mass models 
(Bullimore and Burn 2007) to very advanced models with plenty of DoF and muscle groups included 
(Anderson and Pandy 1999). Depending on the choice of algorithms for estimating muscle forces 
(3.2) different complexity of the model is allowed where inverse dynamics methods can have very 
complex models compared to optimal control strategies. 

A special interest within this thesis was explosive movements including high speed and large forces. 
Consequently, the inverse dynamics that uses a static optimization is not considered as an alternative 
due to poor results in faster movements. A forward dynamic configuration is more appropriated to 
use. Further, often the aim is to find optimal movement patterns and therefore no available measured 
data exist to use a tracking configuration. The commonly used method is therefore an optimal 
control strategy. The models presented below are, by the reasons described above, models used in 
optimal control strategies for estimating muscle forces in movements with high speed and large 
forces (vertical jumps). 

3.4.1 Studies investigating vertical jumps (optimal control strategy) 
In a study conducted 1993 (Anderson and Pandy 1993) subjects jumped on average 5% higher during 
the counter-movement jump (CMJ) than they did during the squat jump (SJ), although some subjects 
performed equally well during both jumps. The model, on the other hand, jumped 2% higher during 
the SJ than it did during the CMJ. In that study the total energy delivered to the skeleton was almost 
the same for the CMJ and the SJ. It was also noticed that there was almost as much elastic strain 
energy stored during the SJ as it was stored during the CMJ. Calculations indicate that much more 
energy was lost as heat during the CMJ than the SJ. With this analytical result in mind, together with 
their own analytical and experimental findings, the authors propose that humans perform 
countermovements not so much to store and re-utilize elastic strain energy during jumping, but 
rather to increase ground contact time during the propulsion phase of the jump. 

Several years later, the same researchers made new more advanced model and analyse (Anderson 
and Pandy 1999). The mode1 was characterized by several key features: first, it was a mode1 of the 
whole body; second, full three-dimensional motion was permitted by virtue of a 6 dof pelvis, 3 dof 
joints for the back and the hips, and 2 dof joints for the ankles; third, the feet were free to make and 
break contact with the ground; and fourth, the number of muscles was much greater than that 
considered in previous dynamic optimization studies. This increase in complexity has improved the 
fidelity of the mode1 in a number of ways: (1) the vertical ground-reaction force demonstrated a 
more gradual decrease near lift-off compared with the results obtained in previous simulations 
(Pandy and Zajac 1991); (2) the fore-aft ground-reaction force was reproduced more accurately than 
before (Pandy and Zajac 1991); and (3) the mode1 was capable of predicting not only the major 
movements of the body segments in the sagittal plane, but also those which occur in the frontal and 
transverse planes. The major limitation of the mode1 was its failure to reproduce the kinematics of 
the jump near lift-off. This result may be explained by the relatively fast rise time for muscle 
activation used in the model. Overall, however, the high leve1 of agreement between mode1 and 
experiment validates many of the parameters assumed in the model. Since the interaction between 
the feet and the ground was modelled efficiently, the model is well suited to simulating three-
dimensional gait (Anderson and Pandy 2001). 
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3.5 Available software 
It has been an increase in research in the area of modelling the musculoskeletal system. The 
continuously improving computers and the fact that it is very time consuming to build own models 
have driven the development of commercial and open source programs. Presented below are some 
of the largest and most used software’s 

SIMM 
Delp & Loan (1995) have created a graphics-based software system that enables users to develop and 
analyse musculoskeletal models without programming. The origin of the program can be found in the 
doctoral thesis by Delp (1990) To define a model using this system one specifies the surfaces of the 
bones, the kinematics of the joints and the lines of action and force generating parameters of the 
muscles. Once a model is defined, the function of each muscle can be analysed by computing its 
length, moment arms, force and joint moments. The software has been implemented on a computer 
graphics workstation so that users can view the model from any perspective and graphically 
manipulate the joint kinematics and musculoskeletal geometry. Models can also be animated to 
visualize the results of motion analysis experiments (Delp and Loan 1995). 

AnyBody 
Recently, the Danish research team Damsgaard, Rasmussen et al. (2006) released the commercial 
software AnyBody Modelling System which is capable of analysing the musculoskeletal system of 
humans or other creatures as rigid-body systems. The software includes features as the inverse 
dynamic analysis that resolves the fundamental indeterminacy of the muscle configuration. In addition 
to the musculoskeletal system, a model can comprise external objects, loads, and motion 
specifications, thereby providing a complete set of the boundary conditions for a given task 
(Damsgaard, Rasmussen et al. 2006). 

Musculoskeletal Modelling in Simulink and Virtual Muscle 
Simulink models of the musculoskeletal system can be created using two software packages, 
Musculoskeletal Modelling in Simulink (MMS) and Virtual Muscle (VM). In addition, there is a need of 
the commercial software package SIMM (Musculographics Inc., USA) for importing models. MMS 
converts anatomically accurate musculoskeletal models generated by SIMM into Simulink© blocks. It 
also removes run-time constraints on kinetic simulations in SIMM, and allows the development of 
complex musculoskeletal models without writing a line of code (Davoodi, Brown et al. 2003). 

Virtual Muscle builds realistic Simulink models of muscles responding to either natural recruitment or 
functional electrical stimulation (FES). Models of sensorimotor control systems can be developed 
using various Matlab© (Mathworks Inc., USA) toolboxes and integrated easily with these 
musculoskeletal blocks in the graphical environment of Simulink (Davoodi, Brown et al. 2003). 

OpenSim 
OpenSim is a freely available open-source software system that lets users develop models of 
musculoskeletal structures and create dynamic simulations of a wide variety of movements. Delp et 
al. (2007)  are using this system to simulate the dynamics of individuals with pathological gait and to 
explore the biomechanical effects of treatments. OpenSim provides a platform on which the 
biomechanics community can build a library of simulations that can be exchanged, tested, analysed, 
and improved through a multi-institutional collaboration. (Delp, Anderson et al. 2007).  
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4 The musculotendon-unit model 

As been stated earlier, the development of a new musculoskeletal model is not trivial and therefore 
not realistic to fit into a master thesis. The work of this thesis was concentred on the development 
of a musculotendon (MT) -unit model. As the name describe this unit consists of the muscle and its 
belonging tendon structure. An important criterion for the model was to make it dimensionless so 
the same model could be used to describe different muscles in the body even though they have 
different properties and dimensions. The scaling parameters used were the maximum isometric 
muscle force (FISO,Max) and the muscle length corresponding to the maximum isometric force (lM,opt). 
During the meticulous review of literature many different MT-unit models were found as can be reed 
earlier (3.1.3). A decision was made to use the model reported by Pandy, Zajac et al. (1990). Even 
though this article is almost two decades old, the model is still used and the subject of the article 
were vertical jumping which includes both high speed and large forces. The MT-unit model in the 
chosen article was first presented at the RESNA conference 1986 (Zajac, Topp et al. 1986) and has 
been cited many times after. 

Another question for discussion was the type of programming environment that should be used. The 
literature are showing a wide spread of environments. Finally decisions were made to develop the 
MT-unit model in Mathematica (Wolfram Research Inc. 2007). The decision was made mostly due to 
earlier familiarity with the program and its ability to treat both symbolic and numerical mathematics. 

When talking about the original article or original graph it refers to Zajac et al. (1986). 
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4.1 MT-unit 
The MT-unit is based as been said on Zajac et al. (1986) which was using a Hill-type model. The 
model consists of a tendon and a muscle (Figure 3). These two components will be described in 
detail later. 

The idea of the model was to build it up using springs and actuators. The representation is basically 
done in a schematic way of the representation of a real human musculotendon unit. The tendon 
model (T) is placed in series with the muscle model (M) and represents by a spring. The muscle 
model consists of a parallel elastic element (PE), a serial elastic element (SE) and a contractile 
element (CE) (see Figure 3). Both the elastic elements are represented by simple springs and CE is 
represented as an actuator.  

 

Figure 3: The musculotendon-unit. The stiffness symbol ki is not used in this report but it stands for the 
tangent stiffness. Reproduced from Zajac et al. (1986) 

In this chapter many symbols are used and many of them are explained below: 

௜ܨ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݊݅ ݁ܿݎ݋݂ 
௜ߣ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݊݅ ݄ݐ݈݃݊݁ ݀݁ݏ݈݅ܽ݉ݎ݋݊ 
݈௜ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݂݋ ݐ݄݈݃݊݁ 
݈ெ,௢௣௧ െ  ூௌை,ெ௔௫ܨ ݐܽ ݈݁ܿݏݑ݉ ݂݋ ݄ݐ݈݃݊݁ 
௜ߤ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݂݋ ݕݐ݅ܿ݋݈݁ݒ ݀݁ݏ݈݅ܽ݉ݎ݋݊ 
௜ݒ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݂݋ ݕݐ݅ܿ݋݈݁ݒ 
߶௜ െ  ݐ݈݊݁݉݁݁ ݄ݐ݅ ݊݅ ݁ܿݎ݋݂ ݀݁ݏ݈݅ܽ݉ݎ݋݊ 
ூௌை,ெ௔௫ܨ െ  ݁ܿݎ݋݂ ܿ݅ݎݐ݁݉݋ݏ݅ ݈ܽ݉݅ݔܽ݉ 
ߙ െ  ݊݋݅ݐܽݒ݅ݐܿܽ ݈݁ܿݏݑ݉ ݀݁ݏ݈݅ܽ݉ݎ݋݊
݅ ൌ ,ܶܯ ,ܯ ܶ, ,ܧܲ ,ܧܵ  ܧܥ

All lengths were made dimensionless by the muscle length at maximal isometric contraction (λM,opt ) 
and the forces by the maximum isometric force (FISO,Max).  
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4.1.1 Muscle 
The components of the muscle are as earlier stated the parallel elastic element (PE), the serial elastic 
element (SE) and the contractile element (CE). The individual properties of the components are 
described separately in own sections below.  

The length of PE (λPE) is the same as for M and the length of SE and CE together gives the length of M 
and that is represented in equations below. 

௉ாߣ   ൌ  ெ (Eq. 1)ߣ
ெߣ   ൌ ௌாߣ ൅  ஼ா (Eq. 2)ߣ
 
The force of M is the sum of the force in SE and PE and the force in CE is equal to the one in SE and 
that is shown below. 

  ߶஼ா ൌ ߶ௌா (Eq. 3) 
  ߶ெ ൌ ߶ௌா ൅ ߶௉ா (Eq. 4) 
 
This gives that at maximal isometric contraction the length of M is exactly one because they are 
made dimensionless.  
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Parallel elastic element 
The purpose of the parallel elastic element was to simulate the force arising from either inter-fibre 
connections or elastic structures internal to the muscle fibre (Zajac, Topp et al. 1986). This was 
simulated by a simple spring and the force was assumed to be zero when the muscle was shorter 
than the optimal length. Further, it was assumed that this relationship was the same among all the 
muscles (Zajac, Topp et al. 1986). 

௉ாܨ   ൌ ݇௉ா ݈௉ா (Eq. 5) 
 
The constitutive equation of the passive muscle was viscoelastic, as it was for most soft tissues. For 
slow movements, the viscous contribution was neglected and hyperelastic models were used for the 
constitutive equation. For more rapid movements, the combination of viscous forces and large 
deformations makes the models extremely nonlinear, and it was necessary to adopt explicit 
integration schemes to solve them (Viceconti, Testi et al. 2006). In this case the equation for PE was 
derived using a graph in the original article. The force equation (Eq. 6) were constructed by 
localization of the points (1.0, 0.0), (1.3, 1.0), (1.2, 0.5) from the original graph (Figure 5) and then 
make a curve fit for a second order polynomial.  

 ߶௉ா ൌ 7.5 െ 15.8 ௉ாߣ ൅ 8.3 ௉ாߣ
ଶ ݄݊݁ݓ ௉ாߣ ൐ 1 

 
(Eq. 6) 

 ߶௉ா ൌ 0 ݄݊݁ݓ ௉ாߣ ൏ 1  
 

 

  
Figure 4: Force-length relationship of PE (Eq. 6). Figure 5: Force-length relationship of PE. 

The symbols used in this graph is the 
representing the same thing as in the 
graph to the left.  Reproduced from Zajac 
et al. (1986) 
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Serial elastic element 
The stiffness of an active muscle is simulated by the serial elastic element (SE). This elasticity is due to 
the elastic components of the cross-bridges (Huxley 1974). 

  ߶ௌா ൌ ݇ௌா ݈ௌா (Eq. 7) 
 
By studying the original graph (Figure 7) the following differential equation can be put up: 

    ߶ௌா
ᇱ ሺ݈ሻ ൌ 10 ൅ 100 ߶ௌா

ᇱ ሺ݈ௌாሻ (Eq. 8) 
 
This equation can be solved and the constant Q1 can be solved by putting the length to the one at 
maximal isometric contraction (λSE,ISO=0.284546) and the force at maximal isometric contraction 
(FSE,ISO=1). The equation and constant are shown below. 

 
   ߶ௌா ൌ ߶ௌாሺߣௌாሻ ൌ െ

1
10

൅ ܳଵ݁ଵ଴଴ ఒೄಶ 

 
ଵܳ ݁ݎ݄݁ݓ ൌ 4.83 ൈ 10ିଵଷ ܽ݊݀ ௌா,ூௌைߣ ൌ 0.284546 

(Eq. 9) 

 
To calculate the exact tendon slack length of SE the force was set to zero and λSE was solved giving 
the following result: 

ௌா଴ߣ   ൌ 0.260567 (Eq. 10) 
 
Due to the fact that SE only manage tensile stretches it was not be able to generate any force when 
the length of SE was shorter than the slack length (λSE<λSE0). Because of the numeric’s, the force in SE 
are never put to zero, a very small number (10-3) is used during these conditions. 

 

 
 

Figure 6: Force-length relationship of SE (Eq. 9) Figure 7: Stiffness-force graph of SE.  
Reproduced from Zajac et al. (1986) 
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Contractile element 
The contractile element is the only active element in the MT-unit. The force of the contractile 
element depends of its length, velocity and activation (Zajac, Topp et al. 1986; Erdemir, McLean et al. 
2007).  

    ߶஼ா ൌ ߶஼ா௅ · ߶஼ா௏ ·  ߙ
 

(Eq. 11) 

݀݁ݖ݈݅ܽ݉ݎ݋݊ ݄݁ݐ ݏ஼ா௅݅߶ ݁ݎ݄݁ݓ     ݁ܿݎ݋݂ ݅݊ ܧܥ ݃݊݅݀݊݁݌݁݀ ݊݋ ݄݁ݐ   ݄ݐ݈݃݊݁
 ܽ݊݀ ߶஼ா௏ ݀݁ݕݐ݅ܿ݋݈݁ݒ ݄݁ݐ ݊݋ ݃݊݅݀݊݁݌  

 

 

Force-length dependence 
The force-length dependency is based on the amount of overlap of the myofilaments under the 
assumption of sarcomere and muscle fibre homogeneity. The same force-length curve could be used 
for all muscles (Zajac, Topp et al. 1986).  

Figure 8: Force-length relationship of CE (Eq. 13) Figure 9: Force-length relationship 
from original article. Reproduced 
from Zajac et al. (1986) 

 
To derive the force-length relation was the greatest challenge compared to the other parts of the 
MT-unit. The original article was only presenting a graph were the force depends of the total muscle 
length (Eq. 2) and not on the length of the contractile element which should be the case. One reason 
for this presentation could be that it is uncommon to include a serial elastic element (SE) in Hill-type 
muscle models. For that reason, the graph from the original article has to be transformed to depend 
on λCE instead of λM. 

From the existing graph (Figure 9) following points were used; (0.4, 0.0), (1.0, 1.0) and (1.6, 0.0). 
These points were used to fit a sinusoidal function by the Matematica function Fit: 

    ߶஼ா௅ሺߣெሻ ൌ max ሾെ1.27 െ 3.46 ெߣ ൅ 6.08 sin ெߣ , 0ሿ (Eq. 12) 
 

where max gives the algebraically largest of its arguments. 

This equation for the length dependence was then used together with the force equation for SE (Eq. 
9). The force in SE and CE should always be the same and this is used in the transformation of FCEL to 
depend on CE instead of M. If the velocity is zero and the activation is constant maximum (=1) the 
only variable is the length dependence (Eq. 11). The dependence is calculated using a for-loop were 

0.5 1.0 1.5
lCE & lM

0.2

0.4

0.6

0.8

1.0

FCEL
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λM is increased from 0.4 to 1.6 with a length step of 0.02. Within the for-loop the force for ߶CEL(λm) 
were calculated and that gave FSE and then the length λSE can be calculated (Eq. 9). The final step was 
to subtract λSE from λM to get λCE (Eq. 1) and by that get the force-length dependence to depend on 
λCE. 

    ߶஼ா௅ሺߣ஼ாሻ ൌ max ሾെ0.419 െ 3.97 ஼ாߣ െ 2.77 ஼ாߣ
ଶ , 10ିଷሿ 

 
(Eq. 13) 

where max gives the algebraically largest of its arguments. 

This equation is plotted in Figure 8. Because of the numeric’s the force (߶CEL) is never put to zero 
instead a very small number (10-3) is used during these conditions. 

 

Force-velocity dependence 
Due to the cross-bridge dynamics the contractile element depends on the velocity of shortening and 
lengthening and with temperature (Huxley 1974). 

Figure 11 shows the graph of the force-velocity relationship from the original article. Due to 
convenience reason this graph was rotated anticlockwise 90 degrees before it was replicated. The 
chosen points were; (-1.0, 0.0), (0.0, 1.0), (2.0, 1.4) and (-0.2, 0.5). The force-velocity curve has 
similar shape as an arc tan-function and therefore this kind of function were chosen to fit against the 
points. That gave the equation: 

 
   ߶஼ா௏ ൌ ߶஼ா௏ሺߣ஼ாሻ ൌ ܽ ൅

ሺܾ݊ܽݐܽ ൅ ܿ ஼ாሻݒ
݀

 

 
ܽ ൌ 0.672   ܾ ൌ 0.796 ܿ ൌ 5.808 ݀ ൌ 2.046 

(Eq. 14) 

 
This equation is plotted in Figure 10. 

According to the original article the fastest contraction possible for the muscle is  ߤ ൌ െ1  and the 
fastest elongation of the muscle is  ߤ஼ா ൌ 2. 

  
Figure 10: Force-velocity relationship of CE (Eq. 14) Figure 11: Force-velocity graph. 

Reproduced from Zajac et al. (1986) 
 
The maximum shortening velocity (vmax) of the muscles can be adjusted to their optimum values for 

-2 -1 1 2
mCE

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FCEV



 4. THE MUSCULOTENDON-UNIT MODEL 

Page 22 
 

the tasks required of them(Alexander 1991). When the muscles are stretched and do negative work, 
the force rises and the rate of ATP splitting falls, so economy increases (Alexander 1991). 

 

Activation 
The activation is only an amplifier which means that the amount of force produced increase but it is 
not changing the force-length or force-velocity curves. The activation is put to a constant value 
before simulation which means that the muscle cannot change its level of activation during the 
simulation. The case of constant activation in a muscle has a very narrow field of applications. 
Suggested case where this could be a good approximation is calf muscles during ground contact of a 
maximal vertical drop jump. 

The reason for having a constant activation is to reduce the complexity of the model but the 
implementation of the activation should be developed further if the model is considered to be used 
in more complex contexts. 
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4.1.2 Tendon 
The tendon element (T) of the model represents the physiological tendon both internal and external 
to the muscle. The strain in the tendon is assumed to be the same everywhere in the tendon. 
Further, it is assumed that the force-strain relationship is the same among all musculotendon units. 
The tendon slack length is varying a lot depending of the muscle (Pandy, Zajac et al. 1990) and is 
therefore change for the specific musculotendon unit. 
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(Eq. 15) 

 

The original article presented a graph (Figure 13) over the relationship between force and strain and 
within this graph three points were located; (0.0, 0.0), (0.03, 1.0) and (0.02, 0.5). A second order 
polynomial was used as fitting function and gave the following function: 
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(Eq. 16) 
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Figure 12: Force-strain relationship of T (Eq. 16). Figure 13: Force-strain graph of T. 
Reproduced from Zajac et al. (1986) 

 

Tendons are usually represented as an elastic element. Even though force varies nonlinearly with a 
change in length as tendon is stretched from its rest length, a linear force-length curve is sometimes 
used. This simplification will overestimate the amount of strain energy stored in tendon (Pandy 
2001). 
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4.2 Numerical calculations 
Last part described the components one by one but they have to be put up to a system representing 
the musculotendon unit. Due to the complexity of the system two configurations of numerical 
calculations were used; starting configuration and dynamic configuration. As the name reveals the 
starting configuration was used before the simulation to find a stable starting equilibrium for the MT-
unit. The equilibrium values from the starting configuration were then used as starting values in the 
dynamic configuration. These two steps had to be conducted because the dynamic configuration 
needed exact starting values and were not able to generate them itself. 

The section of numerical calculations is divided into two parts; starting configuration and dynamic 
configuration.  

4.2.1 Starting configuration 
The basic thought of the starting configuration was to run a simulation in time where no input values 
were change and a final stable equilibrium was found.  

This configuration was developed only because of the complexity of the numerics and therefore 
many input values did not needed a physiological explanation. Because the aim was to find a stable 
equilibrium, the velocity of CE was set to zero (µCE=0). The simulation time was set to 4.5 seconds 
with a relatively large time step (=0.1) and was chosen because it gave good values for all tried cases. 
The only input value that was changing dependent on the simulation performed was the length of the 
MT-unit (λMT). This length was of course changing depending of the starting position. 

To be able to solve for the whole MT-unit the use of a parameter solving algorithm needed to be 
used. This was because the system is highly nonlinear and includes many if-statements. At each time 
step a special algorithm was needed to solve equilibrium between the forces ߶M = ߶T and ߶CE = ߶SE. 
The algorithm was based on a while statement. 

The length of the tendon was used in the while statement, with an old (λTG) and a present (λT) value 
of the tendon length. These two were compared in the while statement and when the difference 
between them was less than the tolerance limit (αs=10-12) the solution were satisfying.  

Inside the while statement the mean of λTG and λT were calculated and became the new λT. As a 
result of changing λT the lengths that depend on it had to be updated (λM, λPE, λSE).  

The problem was that the length of SE depends on the force which by itself depends on the force of 
CE. Consequently, the same procedure that was explained above for the tendon was used here too 
but for λSE. After the new λSE was calculated the length of CE was updated.  

The velocity of CE was thereafter calculated by subtracting the present λCE with the one from last 
time step, this was then divided by the time step length. This formula is used for all time steps except 
the first when the velocity was considered zero. The force of CE can then be calculated and because 
the force of SE should be the same this force was used in the force equation for SE (Eq. 9) and the 
new λSE was solved. This was looped until it satisfied the tolerance. 

Thus, all the lengths were updated and consequently the force of M could be updated. Because the 
force of M should equal the force in T the force in M was used to solve λT using the equation for 
calculating the tendon force (Eq. 16). This was looped until it satisfied the tolerance. 
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The last thing done at every time step was to update λCE for use to calculate the velocity in CE at the 
next time step. 

4.2.2 Dynamic configuration 
A starting value of the length of CE has to be known to be able to run the dynamic configuration. 
This value was the most important outcome from the starting configuration. As the starting 
configuration was in a static equilibrium the velocity of CE was set to zero. The time step was set to 
a constant with the length 10-4 s. 

The input value was the length of the MT-unit which could come from a simple function or from a 
larger musculoskeletal system simulation. The driving variable in the simulation was the length of CE 
which was updated without any ability for correction and was updated according to this equation: 

஼ாߣ  
௡ ൌ ஼ாߣ

௡ିଵ ൅ ஼ாݒ  (Eq. 17) ݐ݀
 
This equation was valid for all cases except if the minimum value of λCE were reached. In that case 
the length was kept constant at the minimum length. 

A while statement was used to solve the length distribution between T and SE. It had the same basic 
thoughts as in the starting configuration algorithm. Here the while statement was driven by an old 
and a new λSE. The mean was taken of these two and generated the new λSE which was used to 
calculate λM and update λT and λPE. Having all the lengths, the force in SE was calculated using the 
force equations of T (Eq. 16) and PE (Eq. 6). Using the force equation for SE (Eq. 9), the length of SE 
was solved. When the tolerance (α=10-10) was reached the loop stopped. 

The final thing in the end at every time step was to calculate the velocity of CE which was used to 
update the length of CE in the next step. The force generated due to the velocity was calculated 
according to: 
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(Eq. 18) 

 
The velocity of CE could then be calculated by using the force-velocity equation (Eq. 14). If this 
equation would generate a value larger than 2 or less than -1 the values were corrected to these 
extreme values. In the situation with values larger than 2 this was noticed because this was a case of 
rupture of the muscle. 
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5 Simulation 

The model developed in the last chapter is of no or very little use alone. The purpose of the MT-unit 
model is that it should be incorporated in a musculoskeletal (MS) model. The MS model could 
include up to 54 muscle groups (MG) (Anderson and Pandy 1999), each represented by one MT-unit 
and their specific muscle properties. It is when these kinds of MS models are included in simulations 
that a good MT-unit is of great use.  

The choice of simulation was greatly dependent of the amount of working hours that reasonably 
could be placed on the simulation. The time consumption for building up and running a complex 
simulation with a complex musculoskeletal model is way too large to fit in the limits of this master 
thesis. Therefore, the simulation is performed using a musculoskeletal model consisting of only one 
degree of freedom, two segments and one muscle (m. soleus). 

This chapter will describe the developed MS model including the MT-unit, make a description of the 
performed simulation and present the results from the simulation. 

 

5.1 Musculoskeletal model 
As been stated above the musculoskeletal (MS) model was aimed to be 
very simple and was therefore introducing many assumptions. The first 
assumption was that the model was developed in two dimensions (2D) 
instead of the three dimensions (3D) a real human have. The movement 
in the transversal plane were assumed to be small and neglected. 
Further, only two segments were included in the model; the foot and 
the shank. In Figure 14 the two segments can be seen, where the shank 
starts at the knee and ends at the ankle and the foot segment starts at 
the ankle and ends at ground contact. The other two thicker lines in the 
foot are just for visual clarity. The thinner line starting from the shank 
and attaching to the foot is representing the only muscle included in the 
model, m. soleus.  

 

 

Figure 14: The MS model 



 5. SIMULATION 

Page 28 
 

Table 2: Muscle specific parameters of m. soleus.  

Muscle specific parameters OpenSim Article 1 Article 2 
Maximal isometric force 4000N 3150N 4235 
Optimal fibre length 0.08m 0.030m 0.034 
Tendon slack length 0.22m 0.264m 0.360 
% - tendon 73.3% 89.8% 91.4 
OpenSim – generic values of a model, Article 1- (Thelen 2003), Article 2 - 
(Pandy, Zajac et al. 1990) 

 

The MT-unit model requires three muscle specific parameters; maximal isometric force, optimal fibre 
length at maximal isometric force and the tendon slack length (see Table 2). Table 2 shows values 
from three different sources with quite different values. One reason could be that different sizes of 
humans have been used and another that the pennation angles are different. The one used in this 
model is the values from OpenSim. 

 

 

 

 

 

 

The segments were numbered so that the foot was given one and the shank two. These numbers 
were used for their mass (mi), length to centre of gravity (lci), length (li) and inertia (Ii), see Table 3. 
Also two absolute angles were introduced according to Figure 15, θ1 and θ2. These angles were very 
convenient when performing calculations but not according to anatomical functions such as MT-unit 
moment arms. Therefore, two more angles represented in degrees were introduced and calculated 
as followed: 
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(Eq. 19) 
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(Eq. 20) 

 
The foot angle, θfoot , is the angle between the ground and the sole of the foot. The ankle angle, θankle , 
is the angle between the shank and sole of the foot and gives zero when they are perpendicular. 
When the angle is less than 90 degrees it gives negative values and lager than 90 degrees positive 
values. 

 

Figure 15: The MS-model. Reproduced from Pandy el al., (1990) 

The human of which all anthropometric data was based on had the total mass of 76 kg. When 
studying Table 3 four segments are recognized but in this model only the shank and foot were 
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modelled. The thigh and HAT were only integrated by placing a point mass in the knee so the length 
and inertia for those were not implemented in this model. 

Table 3: Anthropometric data of the human used in this simulation (Pandy, Zajac et al. 1990). HAT stands 
for Head, Arms and Trunk. The mass for the leg parts is both legs added together. 

 Mass (kg) Length to COG (m) Length (m) Inertia (m4) 
Foot 2.2 0.095 0.175 0.008 
Shank 7.5 0.274 0.435 0.065 
Thigh 15.15 0.251 0.400 0.126 
HAT 51.22 0.343 0.343 6.814 
 

In the beginning of this chapter it was stated that the model only have one degree of freedom (DoF) 
but right now two  DoF have been introduced, θ1 and θ2. The model was made simpler by introduce 
a constraint at the knee, where the horizontal movement were restrained and put to zero (equal to 
the ground-foot contact). This made it possible to express θ2  in θ1 as shown below: 

 
ଶߠ    ൌ ሺെݏ݋ܿܽ

݈ଵ

݈ଶ
cos  ଵሻߠ

(Eq. 21) 

 
All the parameters needed for the MS model have now been introduced so the next step was to 
solve the system and derive the equation of motion which was done using Lagrange’s method. The 
generalized coordinate chosen was θ1 and used in Lagrange function: 

ܮ   ൌ ܶሺݍ, ሶݍ ሻ െ ܸሺݍሻ (Eq. 22) 
 
where L is the Lagrangian, T the kinetic energy, V the potential energy and q the generalized 
coordinate.  

 

5.1.1 MT-unit moment arm 
One important factor in a good MS-model is to give the MT-units appropriate moment arms. The 
moment arm is changing depending on joint angle, muscle contraction and muscle paths. In the 
present model only the dependence of the joint angle was treated which has the largest influence. 
The angle-moment arm relationship was taken from SIMM (MusculoGraphics Inc. 2004) from a 
generic model. This raises a source of error due to the fact that the moment arm depends on the 
size of the human. SIMM generated a table of points which then were fitted to a second order 
polynomial using Mathematica 6.  

ெ்ݎ     ൌ 0.0414 െ 2.37 ൈ 10ିସ ௔௡௞௟௘ߠ െ 5.55 ൈ 10ି଺ ௔௡௞௟௘ߠ
ଶ  (Eq. 23) 

 
where θankle is represented in degrees. 
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5.1.2 Length change of MT-unit 
A part of the modelling of MS was to give the MT-units, in this case only one, a realistic length and 
length change. This means that appropriated origins and insertions should be chosen. Further, many 
muscles does not have a straight muscle path between these two points which influence the length 
and length change. 

In this model only m. soleus was modelled and that is a simple muscle in the sentence of origin, 
insertion and muscle path. The length depends mainly on the angles of the joints and in this case the 
angle of the ankle (θankle). 
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(Eq. 24) 

 

This equation was applied so reasonable values for length and length change were obtained.  

  



 5. SIMULATION 

Page 31 
 

5.2 Drop jump simulation 
The simulation itself is aiming to replicate the contact phase during a drop jump. This is a fast 
movement with large forces which is included in many sports (Stålbom, Holm et al. 2007). The 
muscle was assumed to be fully activated during the whole ground contact which was believed to be 
reasonable. 

The maximum isometric force for m. soleus was set to 7000N instead of the earlier stated 4000N, for 
the reason that more plantar flexor muscles are usually active during this kind of activity and because 
m. soleus was the only implemented muscle in this simulation more force was given to it. 

The starting angular velocity of the foot (θfoot ) and ankle angle (θankleሻ were -353 °/s and 471 °/s, 
respectively. This corresponds to a drop jump from 50 cm. The reason of presenting it in degrees is 
due to convenience of comparing it to the literature.  

5.2.1 MS-model 
The MS-model was developed to be simple and it had the major aim to serve as a tool for evaluating 
the developed MT-unit. Even though the model was supposed to be simple it still needed to serve as 
a sufficient base for evaluating the MT-unit. The result from the MS-model had two important roles; 
describing the conducted simulation and give a brief idea of the ability of generate accurate values for 
the evaluation of the MT-unit.  

The contact time during this analysis was 0.22 s. Figure 16 shows the two angles used to describe the 
position of the shank and foot in degrees. The upper curve is representing the foot angle and the 
lower the ankle angle. As can be seen the downward movement was going faster than the following 
upward movement. The largest moment arm for the MT-unit was shortly before the lowest part in 
the jump (Figure 17).  

 

 
 

 
 

Figure 16: The angles of the foot Figure 17: The MT-unit moment arm 
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Figure 18 is showing five pictures, from left to right, were the first shows the start position and the 
last the end position. The range of motion was approximately within the same region as the one 
found in a very fundamental empirical test. 

             
 
Figure 18: Schematic picture of the jump:  Starting position at  θfoot=20.0° and θankle =6.3°, lowest position at 
θfoot=7.8° and θankle =--9.7° and final position at θfoot=19.7° and θankle =6.0° 
 

 

5.2.2 MT-unit 
The most interesting results were the one for the MT-unit because it was primary this model that 
had been in focus during the model development. One of the aims of the MT-unit model was to 
make it working well with high velocity and large forces. It has been stated that under these 
conditions the passive structure gets a more important role and should be carefully modelled.  

The figures below are showing the length of the whole MT-unit and the CE-unit respectively. The x-
axis shows the time and the y-axis the actual length in metres.  

 

  
Figure 19: Length of MT-unit Figure 20: Length of CE-unit 
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The model consists of three tendons or tendon structures which are modelled as springs. Two of 
them are shown below. They are represented as the percentage of the tendon slack length. As can 
be seen, it begins with a fast lengthening followed by a slower shortening that is not linear. 

  
Figure 21: Elongation of tendon Figure 22: Elongation of SE-unit 
 
When studying the graph for the force in the MT-unit (Figure 23) it can be seen that also here it is 
fast increase in the beginning followed by a decrease in force. The velocity, shown in Figure 24, 
clearly shows a very fast increase in the CE-unit which could be due to instability in the numerics in 
the beginning. The rest of the results seem to be realistic, so the fast increase in all the graphs should 
be used very carefully.  

Figure 23: Force in MT-unit Figure 24: Velocity in CE-unit 
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6 Conclusions 

This thesis has presented a new mathematical model of a musculotendon unit based on an old model. 
The model includes features for force-velocity and force-length relationship, elasticity of cross-
bridges and the passive structures in muscles. The model is dimensionless which makes it possible to 
use for all skeletal muscles in the body together with the muscle specific parameters. Excluded in the 
model is the possibility of variable muscle activity and pennation angle. Running the musculotendon 
unit model within a drop jump simulation generated realistic results. 

The introduction part introduced many interesting questions about muscle forces, optimal movement 
pattern and changes in movement pattern due to injury. Within this thesis no answers to these 
questions have been revealed and due to the complexity of the questions it was not expected. 
Additionally, one question was asking if it is possible to answer the questions above using computer 
simulations. The answer, after conducting this thesis, would be that the questions can be answered 
using validated computer simulations. 

Despite the other conclusions, the major conclusion must be that building a musculotendon and 
musculoskeletal model is both complex and time consuming. Remembering back to the days when 
the thesis started I can only remember the endless possibilities and how easy everything was going to 
run. Looking back after 10 month, summarising the thesis I got a more realistic but much more 
experienced view of model development.  
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Appendix 1: Mathematica code 

 



MT-unit - values and equations
Remove@"Global`∗"D

ak = 1;

ü Soleus interface

FIsoMax = 4000 + 3000;
lMopt = 0.08;

lT0 = 0.22;

ü Interface MS-model to MT model

λT0 =
lT0

lMopt
;

ü Starting configuration values

αs = 10−12;
tsStart = 0;

dts = 10−1;
tsEnd = 45 dts;

ü Dynamic configurations values

dt = 10−4;
tEnd = 0.22;

α = 10−10;
tStart = 0;

NoTS =
tEnd

dt
;

Equations
ü Fundamental eq.

PEEpoints = 881, 0<, 81.3, 1<, 81.2, 0.5<<;

PEEfit = FitAPEEpoints, 91, λPE, λPE
2=, λPEE;

λSE0 = 0.260567;

SEE1 = SolveB−
1

10
+ Q1 Æ100 λSE m 1 ê. λSE → 0.284546F êê Last;

Q1 = Q1 ê. SEE1;

CEL1 = −0.418806 + 3.9661733996344957 LλCE − 2.7717883853211207 LλCE
2 ;

Plot@CEL1, 8LλCE, 0, 1.4<D
FindMaximum@CEL1, 8LλCE, 0.4<D;
arne = FindRoot@CEL1 m 0, 8LλCE, 0.2<D;
arne123 = FindRoot@CEL1 m 0, 8LλCE, 1.2<D;
λCEmin = LλCE ê. arne
λCEmax = LλCE ê. arne123

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.4
-0.2
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0.4
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datavel = 88−2, 0<, 80, 1<, 82.5, 1.4<, 8−0.2, 0.5<<;

kalle = FindFitBdatavel, a +
ArcTan@b + c vCED

d
, 8a, b, c, d<, vCEF;

a
b
c
d

=

a
b
c
d

ê. kalle;

Tpoints = 880, 0<, 80.03, 1<, 80.02, 0.5<<;
tenfit = FitATpoints, 91, ε, ε2=, εE;

ε := HλT − λT0LêλT0

ü Force equations

FPE := If@λPE > 1, PEEfit, 0D

FSE := IfBλSE ≥ λSE0, −
1

10
+ Q1 Æ100 λSE, 10−3F

FCEL := IfAλCEmin < λCE < λCEmax, CEL1 ê. LλCE → λCE, 10−3E

FCEV := IfB−2 < vCE < 2.5, a +
ArcTan@b + c vCED

d
, 0F

FCE := FCEV FCEL ak

FT := IfBε ≥ 0,
25

3
ε +

2500

3
 ε2, 10−5F

FM := FCE + FPE

ü Length equations

λPE := λM



Pre- simulation

The input values

g = 9.81;
θ1 start = 54; H∗ degrees ∗L
StartV = 0.27 9.81 ;
dt = 0.0001;
ContactTime = 0.22;

ü Dimentions of the human simulated

Foot =

m1

lc1

l1

J1

=

2.2
0.095
0.175
0.008

;

Shank =

m2

lc2

l2

J2

=

7.5
0.274
0.435
0.065

;

Thigh =

m3

lc3

l3

J3

=

15.15
0.251
0.400
0.126

;

HAT =

m4

lc4

l4

J4

=

51.22
0.343
0.343
6.814

;

The musculoskeletal model
q2 - position and acceleration 

Th2@t_D := ArcCosB−
l1

l2
 Cos@θ1@tDDF

Hddθ2 := D@Th2@tD, 8t, 2<D

ddθ2 = Hddθ2 ê. 8θ1@tD → θ1, θ1'@tD → dθ1, θ1''@tD → ddθ1<;

Positions

yfot@t_D := lc1 Sin@θ1@tDD
yunderben@t_D := l1 Sin@θ1@tDD + lc2 Sin@Th2@tDD
xunderben@t_D := l1 Cos@θ1@tDD + lc2 Cos@Th2@tDD
yknä@t_D := l1 Sin@θ1@tDD + l2 Sin@Th2@tDD

Velocities

vunderben = D@yunderben@tD, tD;
vunderbenX = D@xunderben@tD, tD;
vknä = D@yknä@tD, tD;

Kinetic energy



TTOT := Trot1 + Trot2 + Ttrans2y + Ttrans2x + Ttrans2yk

Trot1 =
1

2
 IJ1 + m1 lc1

2M Hθ1'@tDL2;

Trot2 =
1

2
 HJ2L HTh2'@tDL2;

Ttrans2y =
1

2
 m2 HvunderbenL2;

Ttrans2x =
1

2
 m2 HvunderbenXL2;

Ttrans2yk =
1

2
 Hm3 + m4L HvknäL2;

Potential energy

Moment := FSOL rMT

VTOT = m1 g yfot@tD + m2 g yunderben@tD + Hm3 + m4L g yknä@tD + 2 Moment Th2@tD;

Lagrangian

L := TTOT − VTOT

LEjT = L ê. 8θ1@tD → θ1, θ1'@tD → dθ1<;

der1 = DALEjT, dθ1E;

der12 = DALEjT, θ1E;

der112 = der12 ê. 8θ1 → θ1@tD, dθ1 → θ1'@tD<;

MomFor1 = D@der1 ê. 8θ1 → θ1@tD, dθ1 → θ1'@tD<, tD − der112;
MomFor1 ê. 8θ1@tD → θ1, θ1'@tD → dθ1<;

MomEkv1 = Solve@MomFor1 m 0, θ1''@tDD êê Last;
Tempddθ = θ1''@tD ê. MomEkv1;
ddθ1 := Tempddθ ê. 8θ1@tD → θ1, θ1'@tD → dθ1<

Drop jump input equations
ü Calcutation momentarm for soleus

momentarm = Import@"soleus_momentarm_calc.txt", "Table"D;
momentarm@@All, 1DD = momentarm@@All, 1DD;
func = FitAmomentarm, 91, ma, ma2=, maE
Show@Plot@func, 8ma, −50, 40<D, ListPlot@momentarmDD

−0.0413893 + 0.000236548 ma + 5.55314× 10−6 ma2

-40 -20 20 40

-0.035

-0.030

-0.025

ma := AnkleAngle

rMT := −func

ü Equations

Transformation equations



DtR =
π

180
;

RtD =
180

π
;

MT-unit length

LMTL = 0.65;

CMTA =
π

18
;

FMTF = 1.07;

lMT := ,IHl1 Cos@θ1D + LMTL l2 Cos@θ2D − FMTF l1 Cos@θ1 − CMTADL2 +

Hl1 Sin@θ1D + LMTL l2 Sin@θ2D − FMTF l1 Sin@θ1 − CMTADL2M

Starting values

brossan = D@l1 Cos@θ1@tDD + l2 Cos@θ2@tDD, tD;
kossan = D@l1 Sin@θ1@tDD + l2 Sin@θ2@tDD, tD;
ekv400 = Solve@8brossan m 0, kossan m −StartV<, 8θ1'@tD, θ2'@tD<D êê Last;

dθ1 := θ1'@tD ê. ekv400 ê. 8θ1@tD → θ1, θ2@tD → θ2<
dθ2 := θ2'@tD ê. ekv400 ê. 8θ1@tD → θ1, θ2@tD → θ2<

θ1 = θ1 start DtR;

θ2 := ArcCosB−
l1

l2
 Cos@θ1DF;

Joint angles

FootAngle := θ1 RtD − 34
AnkleAngle := θ1 RtD − 34 + 90 − θ2 RtD



Starting configuration

λMT :=
lMT

lMopt

vCEStart = 0;
i = 0;

λM := λMT − λT

ForBt = tsStart; is = 0, t ≤ tsEnd, t = t + dts,

H∗ Equation for length change of MT ∗L
λMT;

H∗ Finding FT = FM with λT ∗L
λTG = If@is < 1, λT0, λTD;
λT = If@is < 1, λT0 + 2 αs, λT + 2 αsD;

WhileBAbs@λT − λTGD > αs,

H∗ Calculation of mean ∗L

λT =
λTG + λT

2
;

H∗ Updates λ ∗L
λM; λPE;

H∗ Calculates λSE ∗L
λSEG = If@is < 1, λSE0, λSED;
λSE = If@is < 1, λSE0 + 2 αs, λSE + 2 αsD;

WhileBAbs@λSE − λSEGD > αs,

H∗ Calculation of mean ∗L

λSE =
λSEG + λSE

2
;

H∗ λCE & vCE ∗L
λCE = λM − λSE;

vCE = IfBis < 1, vCEStart,
λCE − λCEFT

dts
F;

H∗ Calculates new λSE ∗L
FCEL; FCEV;
FSEN = FCEV FCEL ak;

ekv1 = FindRootB−
1

10
+ Q1 Æ100 λSEF m FSEN, 8λSEF, λSE0<F;

λSEG = λSE;
λSE = λSEF ê. ekv1;

F;

H∗ Calculating FM ∗L
FPE; FSE;
FTN = FPE + FSE;

ekv2 = FindRootB
25

3

λTF − λT0

λT0
+

2500

3
 

λTF − λT0

λT0

2

m FTN, 8λTF, 1.5 λT0<F;

λTG = λT;
λT = λTF ê. ekv2;

F;



F
λCEFT = λCE;
FT;
is = is + 1;

F

ü Preparation for the dynamic cofiguration

λCEStart = λCE

λCE = λCEStart;
vCE = 0;
λT := λMT − λM

ü Tables for evaluation of the dynamic configuration

ItTot = 0;
Kont1 = Table@0, 840 000<, 82<D;

Kont2 = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NForceSE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NForceCE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NForcePE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NForceT = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NForceM = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NLengthSE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NLengthCE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NLengthT = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NLengthM = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

NLengthMT = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

ContFCE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F;

ContSECE = TableB0, :
ContactTime − 0

dt
+ 1>, 82<F; NVelCE = TableB0, :

ContactTime − 0

dt
+ 1>, 82<F;



Dynamic configuration code

ForBtt = 0; iq = 0, tt ≤ ContactTime, tt = tt + dt,

H∗ Updates momentarm soleus ∗L
ma; rMT;
H∗ Updates MT−unit length ∗L
lMT;

H∗−−−−−−−−−−−−−−−−−−−−−−−− The MT−Unit model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗L
λMT;
H∗ Equation for length change of MT ∗L
λCE = λCE + vCE dt;
If@λCE < λCEmin, λCE = λCEminD;

H∗ Finding FT = FM with λSE ∗L
NrIt1 = 0;
λSEG = λSE;
λSE = λSE + 2 α;

WhileBAbs@λSE − λSEGD > α,

H∗ Calculating mean ∗L

λSE =
λSEG + λSE

2
;

H∗ Updates λ ∗L
λM = λSE + λCE;
λT; λPE;

FSEB = FT − FPE;

IfBFSEB < 10−6, λSE, ekv2 = FindRootB−
1

10
+ Q1 Æ100 λSEF m FSEB, 8λSEF, 1.5 λSE0<FF;

IfAFSEB < 10−6, λSEG = λSE, λSEG = λSE; λSE = λSEF ê. ekv2E;

H∗ Calculates λT ∗L

ItTot = ItTot + 1;
NrIt1 = NrIt1 + 1;
Kont1@@ItTot, 2DD = λT; Kont1@@ItTot, 1DD = ItTot;

F;

H∗ Calculating new velocity ∗L
FCEL;

FCEB =
FSE

FCEL ak
;

ekv10 = FindRootBFCEB m a +
ArcTan@b + c vCEFD

d
, 8vCEF, 0<F;

vCE = vCEF ê. ekv10;
If@vCE < −20, vCE = −2, If@vCE > 20.5, vCE = 2.5, vCEDD;

H∗ Saving data into tables ∗L
i = i + 1;
Kont2@@i, 2DD = NrIt1; Kont2@@i, 1DD = tt;

NForceSE@@i, 2DD = FSE; NForceSE@@i, 1DD = tt;
NForceCE@@i, 2DD = FCE; NForceCE@@i, 1DD = tt;



NForcePE@@i, 2DD = FPE; NForcePE@@i, 1DD = tt;
NForceT@@i, 2DD = FT; NForceT@@i, 1DD = tt;
NForceM@@i, 2DD = FM; NForceM@@i, 1DD = tt;

NLengthSE@@i, 2DD = λSE; NLengthSE@@i, 1DD = tt;
NLengthCE@@i, 2DD = λCE; NLengthCE@@i, 1DD = tt;
NLengthT@@i, 2DD = λT; NLengthT@@i, 1DD = tt;
NLengthM@@i, 2DD = λM; NLengthM@@i, 1DD = tt;
NLengthMT@@i, 2DD = λMT; NLengthMT@@i, 1DD = tt;

ContFCE@@i, 2DD = FCEB; ContFCE@@i, 1DD = tt;
ContSECE@@i, 2DD = λSE + λCE; ContSECE@@i, 1DD = tt;

NVelCE@@i, 2DD = vCE; NVelCE@@i, 1DD = tt;
FSOL = FM ∗ FIsoMax;
H∗−−−−−−−−−−−−−−−−−−−− END MT−Unit model −−−−−−−−−−−−−−−−−−−−−−−−∗L

H∗ Joint torque ∗L
Moment;
H∗ Calculating new acc ∗L
ddθ1;
ddθ2;
H∗ Updates variables∗L

θ1 = θ1 + dθ1 dt +
ddθ1 dt2

2
;

dθ1 = dθ1 + ddθ1 dt;
θ2; dθ2;

H∗ Saving results into tables ∗L
iq = iq + 1;
Thh1@@iq, 2DD = θ1; Thh1@@iq, 1DD = tt;
Thh2@@iq, 2DD = θ2; Thh2@@iq, 1DD = tt;
dTh1@@iq, 2DD = dθ1; dTh1@@iq, 1DD = tt;
dTh2@@iq, 2DD = dθ2; dTh2@@iq, 1DD = tt;
MuscleL@@iq, 2DD = lMT; MuscleL@@iq, 1DD = tt;
momarm@@iq, 2DD = rMT; momarm@@iq, 1DD = tt;
Fotredo@@iq, 2DD = FootAngle; Fotredo@@iq, 1DD = tt;
Ankelredo@@iq, 2DD = AnkleAngle; Ankelredo@@iq, 1DD = tt;

F


